The Topological Indices of some Dendrimer Graphs

Document Type: Research Paper

Authors

1 School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

2 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.

Keywords

Main Subjects


1. R. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24
(1997) 65–84.
2. I. Gutman, S. Klavžar, B. Mohar (Eds), Fifty years of the Wiener index, MATCH
Commun. Math. Comput. Chem. 35 (1997) 1–259.
3. H. Hosoya, Topological Index, A Newly Proposed Quantity Characterizing the
Topological Nature of Structural Isomers of Saturated Hydrocarbons, Bull. Chem.
Soc. Jpn. 44 (1971) 2332–2339.
4. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc.
69 (1947) 17–20.
5. I. Gutman, A formula for the Wiener number of trees and its extension to graphs
containing cycles, Graph Theory Notes N.Y. 27 (1994) 9–15.
6. S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs,
Appl. Math. Lett. 9 (1996) 45–49.
7. P. V. Khadikar, On a Novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000)
113–118.
8. P. V. Khadikar. S. Karmakar and V. K. Agrawal, Relationship and relative
correction potential of the Wiener, Szeged and PI Indices, Nat. Acad. Sci. Lett. 23
(2000) 165–170.
9. H. P. Schultz, T. P. Schultz, Topological organic chemistry. 3. Graph theory, Binary
and Decimal Adjacency Matrices, and Topological indices of Alkanes, J. Chem. Inf.
Comput. Sci. 31 (1991) 144–147.
10. H. P. Schultz, T. P. Schultz, Topological organic chemistry. 6. Theory and
topological indices of cycloalkanes, J. Chem. Inf. Comput. Sci. 33 (1993) 240–244.
11. I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem.
Inf. Comput. Sci. 34 (1994) 1087–1089.
12. I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the theory of the
Wiener number, Indian J. Chem. 32 (1993) 651–661.
13. M. Randić, Novel molecular descriptor for structure–property studies, Chem. Phys.
Lett. 211 (1993) 478–483.
14. D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper–Wiener index for
cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 5052.