Doslic, T., Sedghi, S., Shobe, N. (2017). Stirling Numbers and Generalized Zagreb Indices. Iranian Journal of Mathematical Chemistry, 8(1), 1-5. doi: 10.22052/ijmc.2017.15092

T. Doslic; S. Sedghi; N. Shobe. "Stirling Numbers and Generalized Zagreb Indices". Iranian Journal of Mathematical Chemistry, 8, 1, 2017, 1-5. doi: 10.22052/ijmc.2017.15092

Doslic, T., Sedghi, S., Shobe, N. (2017). 'Stirling Numbers and Generalized Zagreb Indices', Iranian Journal of Mathematical Chemistry, 8(1), pp. 1-5. doi: 10.22052/ijmc.2017.15092

Doslic, T., Sedghi, S., Shobe, N. Stirling Numbers and Generalized Zagreb Indices. Iranian Journal of Mathematical Chemistry, 2017; 8(1): 1-5. doi: 10.22052/ijmc.2017.15092

^{1}1Department of Mathematics, Faculty of Civil Engineering, University of Zagreb,

^{2}Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshar, Iran

^{3}Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran

Abstract

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

1. E. Deutsch, S. Klavžar, M–polynomial and degree–based topological indices, Iranian J. Math. Chem. 6 (2015) 93–102. 2. T. Došlić, M. Ghorbani, M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Util. Math. 84 (2011) 297–309. 3. G. H. Fath–Tabar, A. Azad, N. Elahinezhad, Some topological indices of tetrameric 1,3–adamantane, Iranian J. Math. Chem. 1 (2010) 111–118. 4. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190. 5. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison–Wesley, Reading, 1988. 6. I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92. 7. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. 8. X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208. 9. S. Sedghi, N. Shobe, M. A. Salahshoor, The polynomials of a graph, Iranian J. Math. Sci. Inf. 3 (2008) 55–68. 10. G. B. A. Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb indices, Kragujevac J. Math. 38 (2014) 95–103.