A New Explicit Singularly P-Stable Four-Step Method for the Numerical Solution of Second Order IVPs

Document Type: Research Paper

Authors

1 Department of mathematics, University of Maragheh, Amirkabir Highway, P. O. Box. 55181-83111

2 Department of Mathematics, Faculty of Basic Science, University of Maragheh, Maragheh, Iran.

10.22052/ijmc.2020.207671.1472

Abstract

In this paper, we introduce a new symmetric explicit four-step method with variable coefficients for the numerical solution of second-order linear periodic and oscillatory initial value problems of ordinary differential equations. For the first time in the literature, we generate an explicit method with the most important singularly P-stability property. The method is multiderivative and has algebraic order eight and infinite order of phase-lag. The numerical results for some chemical (e.g. orbit problems of Stiefel and Bettis) as well as quantum chemistry problems (i.e. systems of coupled differential equations) indicated that the new method is superior, efficient, accurate and stable.

Keywords


  1. A. C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation, J. Comput. Phys. 6 (1970) 378-391.
  2. J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math. 6 (1) (1980) 19-26.
  3. J. M. Franco and M. Palacios, High-order P-stable multistep methods, J. Comput. Appl. Math. 30 (1) (1990) 1-10.
  4. F. Hui and T. E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation, J. Math. Chem. 53 (10) (2015) 2191-2213.
  5. J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189-202.
  6. Q. Li and X. Y. Wu, A two-step explicit P-stable method for solving second-order initial value problems, Appl. Math. Comput. 138 (2-3) (2003) 435-442.
  7. Q. Li and X. Y. Wu, A two-step explicit P-stable method of high phase-lag order for second order IVPs, Appl. Math. Comput. 151 (1) (2004) 17-26.
  8. Q. Li and X. Y. Wu, A two-step explicit P-stable method of high phase-lag order for linear periodic IVPs, J. Comput. Appl. Math. 200 (1) (2007) 287-296.
  9. M. Mehdizadeh Khalsaraei, A. Shokri and M. Molayi, The new high approximation of stiff systems of first order IVPs arising from chemical reactions by k-step L-stable hybrid methods, Iranian J. Math. Chem. 10 (2) (2019) 181-193.
  10. M. Mehdizadeh Khalsaraei and A. Shokri, An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscillatory initial value problems, Numer. Algor. (2019), DOI:10.1007/s11075-019-00784-w.
  11. K. Mu and T. E. Simos, A Runge-Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation, J. Math. Chem. 53 (5) (2015) 1239-1256.
  12. B. Neta, P-stable symmetric super-implicit methods for periodic initial value problems, Comput. Math. Appl. 50 (5-6) (2005) 701-705.
  13. G. D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, The Astro. J. 100 (5) (1990) 1694-1700.
  14. H. Ramos, Development of a new Runge-Kutta method and its economical implementation, Comput. Math. Methods 1 (2) (2019) e1016.
  15. A. D. Rapits, Exponentially-fitted solutions of the eigenvalues Schrödinger equation with automatic error control, Comput. Phys. Commun. 28 (1983) 427-431.
  16. A. D. Rapits and A. C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation, J. Comput. Phys. Commun. 14 (1978) 1-5.
  17. A. D. Raptis and J. R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation, Comput. Phys.Commun. 36 (2) (1985) 113-119.
  18. A. Shokri, A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillation solutions, Numer. Algor. 77 (1) (2018) 95-109.
  19. A. Shokri, An explicit trigonometrically fitted ten-step method with phase-lag of order infinity for the numerical solution of the radial Schrödinger equation, Appl. Comput. Math. 14 (1) (2015) 63-74.
  20. A. Shokri, The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems, Bull. Iranian Math. Soc. 41 (2015) 191-205.
  21. A. Shokri, M. Mehdizadeh Khalsaraei, M. Tahmourasi and R. Garcia-Rubio, A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag some of its derivatives for the numerical solution of radial Schrödinger equation and IVPs with oscillating solutions, Numer. Algor. 80 (2) (2018) 557-593.
  22. A. Shokri, M.Y. Rahimi Ardabili, S. Shahmorad and G. Hojjati, A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs., J. Comput. Appl. Math. 235 (2011) 1706-1712.
  23. A. Shokri and H. Saadat, High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems, Numer. Algor. 68 (2015) 337-354.
  24. A. Shokri and M. Tahmourasi, A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions, Iranian J. Math. Chem. 8 (2) (2017) 137-159.
  25. A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new class of two-step P-stable TFPL methods for the numerical solution second order IVPs with oscillating solutions, J. Comput. Appl. Math. 354 (2019) 551-561.
  26. A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new four-step P-stable Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of Schrödinger equation, J. Comput. Appl. Math. 354 (2019) 569-586.
  27. A. Shokri, J. Vigo-Aguiar, M. Mehdizadeh Khalsaraei and R. Garcia-Rubio, A new implicit six-step P-stable method for the numerical solution of Schrödinger equation, Int. J. Comput. Math. (2019), DOI: 10.1080/00207160.2019.1588257.
  28. S. Stavroyiannis and T. E. Simos, A nonlinear explicit two-step algebraic order method of order infinity for linear periodic initial value problems, Comput. Phys. Commun. 181 (8) (2010) 1362-1368.
  29. S. Stavroyiannis and T. E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs, Appl. Numer. Math. 59 (10) (2009) 2467-2474.
  30. T. E. Simos, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems, Comput. Mater. Sci. 18 (3-4) (2000) 315-332.
  31. T. E. Simos and J. Vigo-Aguiar, An exponential fitted high order method for long-time integration of periodic initial-value problems, Comput. Phys. Commun. 140 (3) (2001) 358-365.
  32. T. E. Simos and P. S. Williams, A finite-difference method for the numerical solution of the Schrödinger equation, J. Comput. Appl. Math., 79 (2) (1997) 189-205.
  33. E. Steifel and D. G. Bettis, Stabilization of Covell’s methods, Numer. Math. 13 (1969) 154-175.
  34. J. Vigo-Aguiar and H. Ramos, Variable stepsize implementation of multistep methods for , J. Comput. Appl. Math. 192 (2006) 114-131.
  35. X. Xi and T. E. Simos, A new four-stages twelfth algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation, MATCH Commun. Math. Comput. Chem. 77 (2) (2017) 333-392.
  36. Z. Zhou and T. E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation, J. Math. Chem. 54 (2) (2016) 442-465.