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The main aim of the current paper is to propose an upwind local 
radial basis functions-finite difference (RBF-FD) method for 
solving compressible Euler equation. The mathematical formulation 
of chemically reacting, inviscid, unsteady flows with species 
conservation equations and finite-rate chemistry is studied. The 
presented technique is based on the developed idea in [58]. For 
checking the ability of the new procedure, the compressible Euler 
equation is solved. This equation has been classified in category of 
system of advection-diffusion equations. The solutions of advection 
equations have some shock, thus, special numerical methods should 
be applied for example discontinuous Galerkin and finite volume 
methods. Moreover, two problems are given that show the 
acceptable accuracy and efficiency of the proposed scheme.  
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1. INTRODUCTION  

During the recent decade, the meshless methods have been employed to solve the partial 
differential equations (PDEs). The meshless methods don’t use any mesh, element or lattice 
to discrete the computational domain for obtaining some numerical results. According to 
the basic advantages of meshless methods, these techniques may be classified as follows: 
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 The global form, 
 The local form. 

The local meshless method is an improvement of meshless techniques where they can 
be split in two forms:  

 Local meshless methods based on the variational (local) weak form,  
 Local meshless methods based on the strong form.  

In the local meshless methods based on the weak form, there are some integrals 
which must be computed with suitable accuracy thus these methods have more difficulty 
and need more CPU time. But in the local meshless methods based on the strong form there 
are not any integral so these techniques will be very flexible to solve models with nonlinear 
term.  
 A local meshless collocation method based on the finite difference approach is the 
RBFs-FD method. The RBF-FD idea has been developed in [15, 25, 26, 51, 59, 62]. 
Authors of [24] developed a filter approach for RBF-FD that is related to traditional 
hyperviscosity and which can be applied quickly in any number of dimensions. Also, some 
analytical explanations related to the weights of Gaussian RBF-FD formula are obtained in 
[3]. The main aim of [2, 4, 1] is to obtain an optimal shape parameter for RBF-FD 
technique. Also, some researchers studied RBF-FD method such as large-scale geoscience 
modeling [23], hyperbolic PDEs on the sphere [6], diffusion and reaction-diffusion 
equations (PDEs) on closed surfaces [55], improved meshless local Petrov-Galerkin for 
transient heat conduction problems [11], the interpolating moving least square-Ritz (IMLS-
Ritz) analysis of laminated CNT-reinforced composite quadrilateral plates [68], etc.  
 One of the local meshless methods is the radial basis functions-differential 
quadrature (RBF-DQ) procedure. The differential quadrature method was first introduced 
by Richard Bellman et. al [5]. The polynomial functions have been selected as the test 
function [57]. For the first time, authors of [59] proposed the meshless RBFs-DQ method 
by using the RBFs. The RBF-DQ method is similar to the local RBF (LRBF) and RBF-FD 
methods. The RBFs-DQ is employed for solving several PDEs such as equations in fluid 
dynamic [59, 60], system of boundary value problems [13], coupled Klein-Gordon-
Zakharov equations [14], doubly-curved shells made of composite materials [63], Stokes 
flow problem in a circular cavity [39], etc. Natural phenomena can be described by PDEs. 
We refer the interested reader to [65] for various applications of partial differential 
equations in science and engineering and also for some approaches in obtaining their 
solutions.  
 Chemically reacting flows have many applications in engineering such as 
hypersonic reacting flows around a blunt body, rocket nozzle combustion, pre-mixed 
detonation, etc. By combination of Euler and Navier-Stokes equations with species mass 
conservation equations and finite-rate chemical reactions a mathematical model has been 
obtained. Three physical processes involved in chemically reacting flows are:  
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  Fluid dynamics  
  Thermodynamics  
  Chemical reactions  

As a brief explanation, we can say that the fluid dynamics process is defined by 
conservation of mass, momentum and energy, the thermodynamics of the reactive fluid 
include microscopic heat transfer between gas molecules, work done by pressure, and 
volume change and the Chemical reactions determine the generation and/or destruction of 
chemical species under the constraint of mass conservation.  

Numerical solution of the Euler or Navier-Stokes equations within species 
conservation terms are widely used to analyze chemically reacting flows. Chemically 
reacting flows which may only be investigated using finite-rate chemistry extend a simple 
combustion to detonation of fuel-air mixtures. The Euler equation has many application 
such as airfoil, chemistry, explosion, deflagration, detonation, fuel-air explosives, pulse 
detonation engine, etc. 

 
1.1. ORGANIZATION CHART FOR THE MANUSCRIPT 

In this paper we apply a local truly meshless method based on the RBF-DQ technique for 
solving an equation in water science in two-dimensional case. The structure of this article is 
as follows:  

 In Section 2, we explain the LRBF-FD method. 
 In Section 3, we explain the improved LRBF-FD method. 
  In Section 4, we report the numerical experiments of solving the considered models 

for some test problems. 
 Finally, a brief conclusion of the current paper has been written in Section 5. 

 
1.2. IMPLEMENTATION OF LOCAL RBFS−FD TECHNIQUE  

Meshfree methods are built based on scattered nodes in the problem domain [41]. One of 
the meshless methods is radial basis functions collocation method in global and local 
senses. In the current paper, we use the local radial basis functions method because this 
idea works for arbitrary domains and is simple for working with problems in high 
dimensions. Radial basis functions collocation method is known as Kansa’s method [35, 
36, 37].  
 Kansa’s method was developed in 1990, in which the concept of solving PDEs by 
using RBFs collocation method was planned. There are different types of radial basis 
functions such as Multiquadratics (MQ), Gaussian (GS) and polyharmonic splines. The 
MQ function was originally introduced by Hardy [27] who successfully applied this 
method for approximating surface and bodies from field data.  



254                                                                        KARAMALI, ABBASZADEH AND DEHGHAN 

 

 Gu and his co-workers [18] developed a numerical technique based on meshless 
local Kriging method for solving the large deformation problems, which are geometrically 
nonlinear. This is the first work for the geometrically nonlinear analysis by the mentioned 
meshless local weak-form method. A new local point interpolation method (LPIM) is 
proposed in [19] to deal with fourth-order boundary-value and initial-value problems for 
static and dynamic analysis of beams. Authors of [20] developed an enriched radial point 
interpolation method (E-RPIM) for the determination of crack tip fields.  

Author of [52] used a regularization method to prevent the failure of the Cholesky 
factorization and to improve the accuracy of symmetric positive definite (SPD) matrix 
factorizations when the matrices are severely ill-conditioned. The main aim of [53] is to 
examine how extended precision floating point arithmetic can be used to improve the 
accuracy of RBFs methods in an efficient manner.  

 
Definition 2.1. [22, 66] A symmetric function d    is strictly conditionally positive 
definite of order m , if for all sets d

NX x x  1= { , , }  of distinct points, and all vectors 
dλ  satisfying  =1 ( )= 0N

i ii λ p x  for any polynomial p  of degree at most 1m , the 
quadratic form  

 
=1 =1

= ( ),
N N

T
i j i j

i j
λ Aλ λ λ φ x x  

is positive, whenever  0λ .  
 

We interpolate a continuous function df  :  on a set 1= { , , }NX x x  with 

choosing the radial basis function for dφ  :  that is radial in the sense that 

φ x x( )=Ψ( ) , where .  is the usual Euclidean norm on d  as we will explain in the next 

section. Now, we assume φ  to be strictly conditionally positive definite of order m , then 
the interpolation function has the following form [22, 66]  

 
N l

i i j j
i j

τf x λ φ x x γ p x  
=1 =1

( )= ( ) ( ),  

where 1
=

1
  

  

d m
l

m
 and 1 2{ , , , }lp p p  is a basis of d

m . The basic problem is to find 

N l  unknown coefficients iλ  and jγ  in which N  interpolation conditions are to the 

following form [22, 66]  
 i iτf x f( )= , =1, , ,i N  

and for l  remaining conditions we use the following equations  
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=1

( )= 0,
N

i j i
i
λ p x 1 .j l   

The accuracy of many schemes for interpolating scattered data with radial basis 
functions and to solve partial differential equations using meshfree methods based on radial 
basis functions depends on a shape parameter c , of the radial basis function [41]. Also we 
refer the interested reader to [10, 56] for useful investigation on meshless method of radial 
basis functions and some related issues.  

In this section, we explain the local collocation meshless method based on an 
arbitrary shape function. As is well-known the local interpolation procedure is as follows 
[23, 24]  

  ( )= ,m j j
j τi

ε f x β ψ x y



        (2.1) 

1. in which  y  is the set of N  centers,  

2. iτ  is the set of nodes that are into the stencil of ith node,  

3. β


 is the unknown weights that must be computed.  
Also, the unknown weight can be calculated using the following interpolation 

conditions [23, 24]  
 m j jε f x f x ( )= ( ) . (2.2) 

Eq. (2.2) is equal to the following linear system of equations  
 Aβ f


= , (2.3) 

in which  

 
Ii

f f x f x f x 
  

  1 2= ( ), ( ), , ( ) ,  jk j kB ψ x x 
2

= ,  ij k I, . 

A local RBFs operator (including local derivatives or etc) can be obtained as follows 
[23, 24]  

  2
( ) = .j j

j τi

f x β ψ x y



       (2.4) 

The above relation may be compacted in the following form  
 ( ) = ,Tf x h β

 
     (2.5) 

where  

    ii
h ψ x y

2
= ,   ii τ .   (2.6) 

Eqs. (2.3) and (2.5) yield  

    1( ) = = ,T
iτ τi i

f x h wB f f
 

   
 (2.7) 

in which iw  is the stencil weights at the shape function center i  [23, 24]. 
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2. THE PROPOSED IMPROVEMENT FOR LRBFS−FD METHOD OF [58] 

Shu et al [58] developed an improvement for LRBFs-DQ technique based on the upwind 
method. Also, it must be mentioned that the current section has been taken from [58]. The 
2D unsteady compressible Euler equations are as follows  

 ( ) ( )= 0,U F U G U
t x y
  

 
  

   (3.1) 

or  

 ( )= 0,U H U
t


 
    

 (3.2) 

in which [58]  

  
2

2, , , .

( ) ( )

u v
u u p uv
v uv v p

e u e p v e p

     
             
     
     

      

U F G H F G

  
  
  

 (3.3)  

In the above model [58]: 
 U  is the vector of conservative variables, 

     Tu v e  is the primitive variables, 

  m


  Tu v  is the momentum vector, 

  u Tu v  T is the velocity vector, 

 
2 2

=
2

u ve ρ ε
 
 

  
 is the total energy, 

  and ε  is the specific internal energy.  
 
The pressure p  is [58]  

  
2

= 1 .
2

up γ e ρ
 

   
 

     (3.4) 

The model (3.1) has been solved by using several numerical techniques such as 
adjoint-based an adaptive finite volume method [30], a novel reduced-order thrust model 
[40], a novel Mach-uniform numerical model [67], vortex-induced vibration for an isolated 
circular cylinder [69], improvement of aerodynamic characteristics [33], an adaptive finite 
volume method for steady case [31], a posteriori error estimator based on the variational 
multiscale theory [28], isogeometric finite element Navier–Stokes solver [43], 
compressible Navier–Stokes solvers according to the optimized upwind compact schemes 
[54], an adaptive WENO reconstruction [29], a discontinuous Galerkin method (DGM) 
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[45], a compact least-squares finite volume procedure [64], a third-order finite-volume 
technique [17], development of a high-order finite volume method based on moving 
Kriging shape functions [7], transonic integro-differential and integral equations [44], a 
hybrid boundary element-finite volume method [32], vortex method [34], laminar and 
turbulent flow over different airfoils using Open FOAM [46], a numerical investigation of 
the effects of leading-edge protuberances on airfoil stall and post-stall performance based 
on the improved delayed detached eddy simulation (IDDES) method [70], a numerical 
study that determines how the boundary layer properties of an airfoil are modified with 
angle of attack [38], numerical procedure used for the Reynold’s equations [42], study of 
the Reynold’s number influences on aerodynamics of a typical supercritical airfoil [12], etc. 
Also, we must mention that there are many research articles on solving the Euler equations. 
Authors of [50] developed a Chebyshev finite difference (ChFD) method and DTM-Pade 
method, which is a combination of differential transform method (DTM) and Pade 
approximant, for solving singular boundary value problems arising in the reaction cum 
diffusion process.  

For Eq. (3.1), we employed the LRBF-DQ technique but with a modified version 
that is developed in [58]. As is said in [58], the employed nodes for collocating are located 
at mid points i.e between the reference node and its support [58]. Using the local RBF-DQ 
method to discrete the spatial direction, yields [58]  

 ( ) ( )
, , , ,

=0
= ( ) ( ) .

NI nx y
i k i k i k i k

ki

dU w F U w G U
dt

       (3.5) 

According to relation (3.5) a new flux can be obtained as follows [58]  
 , , , , ,= ( ) ( ),i k i k i k i k i kS α F U β G U     (3.6) 

where [58]  

 
       

( ) ( )
, ,

, ,2 2 2 2( ) ( ) ( ) ( )
, , , ,

= , = .
x y

i k i k
i k i k

x y x y
i k i k i k i k

w w
α β

w w w w 
  (3.7) 

By denoting  

   2 2( ) ( )
, , ,= ,x y

i k i k i kW w w     (3.8) 

then Eq. (3.5) can be rewritten as  

 
1

, ,
=0

= .
N

i k i k
ki

dU W S
dt

     (3.9) 

However, the new flux at the mid-point can be obtained based on the Roe’s scheme [58]  

     1 1( , ) = ( ) ( ) ,
2 2L R L R L RS U U S U S U M U U     (3.10) 
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in which ),( RL UUS , )( LUS  and )( RUS  are the new flux. Also, M  denotes the constant 
Jacobain matrix for approximating the Jacobian matrix M . Roe [49] developed a vector Z  

to approximate the Jacobian matrix M . The vector U  and its flux )(US  can be explained 
in vector Z  [58]  

  1 .Tu v HZ     (3.11) 

The variations of U  and )(US  are [58]  

 ( ) = ( ),R L R LU U B Z Z  ( ) = ( ).R L R LS S C Z Z    (3.12) 
Also, the above relations can be rewritten as  

  1
( ) = ( ).R L R LS S C B U U



     (3.13) 
This results  

   1
= ,M C B



    (3.14) 
in which [58]  

ˆ = ,

ˆ = ,

ˆ = ,

ˆ = .













L R

L L R R

L R

L L R R

L R

L L R R

L R

u u
u

v v
v

H H
H

  

 

 

 

 

 

 

 

Also, according to [58], we use the following flux to obtain high-order accuracy [58]  

    ,),(
2
1)()(

2
1=),( * RLRLRL

RL UUUUAUSUSUUS    (3.15) 

in which *A  is the Roe’s approximate Jacobian matrix. The interested readers can find 
more details in [58]. 

 
3. NUMERICAL EXPERIMENTS 
 
In this part of paper, we test the proposed new technique on two test problems. The used 
plate or in the other word the computational domains are rectangular that show the 
efficiency of the present method. We employ the Matlab 7 software based version of 2010 
with 4 Gbyte of memory. 
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4.1. TEST PROBLEM 1 (BUMP GEOMETRY [7]). 

As the first example, we consider a bump geometry. We employ a bump geometry that is 
depicted in Figure 1. Figure 2 demonstrates the graphs of approximation solution at 
different values of final times for Test problem 3. 
 
4.2. TEST PROBLEM 2 (INVISCIDFLOW [7]). 

For the last problem, we apply the LRBF-DQ method for the case of an inviscid flow on a 
NACA 0012 airfoil with free stream Mach number = 0.63M  and an angle of attack = 2α   
[7]). Figure 3 presents transonic flow past a NACA 0012 airfoil for Test problem 2. 
 
4. CONCLUSION 

The advection problem may be appeared in chemistry, physics, fluid mechanics and etc. In 
other hand, sometimes finding their analytic solutions is so difficult. Thus, applying a 
useful and efficient numerical method for solving these equations is a topic of interest for 
researchers. Up to the best of authors’ knowledge many well-known numerical procedures 
are not able to solve these problems. In the current investigation, we have suggested a 
numerical method for solving the mentioned equations. The local collocation technique is 
presented for solving an important equation in fluid flow equations. The method presented 
here is based on the upwind local RBF-DQ method. Numerical results confirm the accuracy 
and efficiency of the proposed scheme. 
 

 

Figure 1. The computational domain for Test problem 1. 
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Figure 2. Graphs of approximation solution with different values of final times to test 

Problem 1. 



An Upwind Local Radial Basis Functions-Finite Difference (RBF-FD) Method                 261 

 



262                                                                        KARAMALI, ABBASZADEH AND DEHGHAN 

 

 
Figure 3. Graphs of approximation solution with different values of final times to test 
                Problem 2. 
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